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Summary

1. The mvabund package for R provides tools for model-based analysis of multivariate abundance

data in ecology.

2. This includes methods for visualising data, fitting predictive models, checking model assump-

tions, as well as testing hypotheses about the community–environment association.

3. This paper briefly introduces the package and demonstrates its functionality by example.
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In ecology, multivariate abundance data are widely used to

study how community structure changes along environmental

gradients and to test hypotheses about the impact of some

environmental variable or experimental treatment. For exam-

ple, Warwick, Clarke & Gee (1990) used a spatially blocked

design to show that a disturbance treatment significantly

affected a meiobenthic community consisting of 12 copepod

species. However, the distance-based methods of analysis used

byWarwick, Clarke & Gee (1990), still commonly used today,

were unable to: (i) test whether the treatment effect was consis-

tent across blocks or whether it operated differently in different

blocks (test for interaction); (ii) identifywhich species expressed

the treatment effect (multiple testing); (iii) predict the abun-

dance of each species in different treatments or blocks (predic-

tion). More recent distance-based methods (Clarke & Gorley

2006; Leathwick et al. 2011, for example) aim to address some

of these issues, but they inherit from the distance-based frame-

work some potentially serious problems in interpretability and

performance (Warton,Wright&Wang 2012). This short paper

introduces a new R package, mvabund, containing new meth-

ods of analysis that directly address all three issues listed above

using amodel-based framework.

There has been a recent trend towards model-based

approaches to the analysis of multivariate abundance data in

ecology (Yee 2010; Ives & Helmus 2011; Ovaskainen &

Soininen 2011). The mvabund package builds on this trend by

developing a novel set of hypothesis testing tools using the

generalised linear models (GLM) framework (Warton 2011).

This is a flexible and powerful framework for analysing

abundance data – capable of handling most common data

types (presence/absence, presence-only, count, etc.) and shown

to have better power properties than distance-based methods

(Warton 2011;Warton,Wright &Wang 2012). The key model

fitting function ismanyglm, which fits a separateGLM to each

species, using a common set of explanatory variables. The

anova and summary functions, which work on manyglm

objects in the same way as for glm, use resampling-based

hypothesis testing to make community-level and taxon-specific

inferences about which factors or environmental variables are

associated with the multivariate abundances. These inference

tools take intoaccount correlationbetween species,which isnot

possibleusingstandardglmtools.

The main features of the mvabund package are new meth-

ods for visualising data, fitting predictive models, checking

model assumptions, and testing hypotheses about the commu-

nity-environment association. These features are summarised

below.

VISUALIS ING DATA

The package can produce a range of plots to visualisemultivar-

iate abundance data, as in Warton (2008). The following com-

mands can be used to visualise the effect of treatment on

copepod abundance (Fig. 1a), for the Tasmania data set:

> data(Tasmania)

> attach(Tasmania)

> tasmvabund< mvabund(copepods)

> plot(tasmvabund� treatment, col ¼ as.

numeric(block))

There is a suggestion that treatment reduced abundance of

Ameira and Ectinosoma, whereas it may have increased

abundance of Mictyricola. We can test the hypothesis of a

treatment effect, but first, we need to find a suitable model for

the copepod data.*Correspondence author. E-mail: david.warton@unsw.edu.au
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FITT ING PREDICTIVE MODELS

Predictivemodels can be fitted using the manyglm function:

> tas.nb < manyglm(copepods� block*treatment,

family ¼ "negative.binomial") This function fits a

generalised linear model (Zuur, Ieno & Elphick 2010) sepa-

rately to each species. The argument family specifies the

assumed distribution of the data. Negative binomial regression

was specified in the above (family ¼ "negative.bino-

mial"), this often being appropriate for count data, with the

mean–variance function tending to be quadratic rather than

linear (O’Hara &Kotze 2010). Other available options include

binomial (for presence–absence data), Poisson (for

presence-only data) and gaussian. The formula copepods
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Fig. 1. (a) plot.mvabund plots copepod abundance against treatment groups, samples in the same block have been coded with the same colour.

(b) plot.manyglm produces a residual vs. fits plot to check the quadratic mean–variance assumption of negative binomial regression (with

different species coded in different colours); little pattern suggests the assumption is plausible. (c) meanvar.plot produces a mean–variance

plot; there is a roughly quadratic trend. (d) anova.manyglm produces an analysis of deviance table. The multivariate test indicates a significant

treatment effect and non-significant interaction. Separate results for each species (adjusted for multiple testing) are also returned.
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� block*treatment specifies an orthogonal two-factor

model. That is, the model for the number of copepods of

species j found at site i (Yij) is negative binomial:

Yij � NBðljkl;/jÞ eqn 1

where site i is in block k and it received treatment l. The

overdispersion parameter /j is constant across sites but

can vary across species, and the mean of Yij is ljkl, a log-

linear function of block and treatment:

logðljklÞ ¼ interceptj þ blockjk þ treatmentjl

þ block� treatmentjkl
eqn 2

An important feature of using a model-based analysis

framework is that the model that is fitted can be used for pre-

dictive purposes (Ives & Helmus 2011). For example, the pre-

dicted values for each species and site can be obtained using:

> predict(tas.nb, type¼ "response")

Other key commands familiar to R users for exploring

glm objects are also available for manyglm objects, e.g.

coef(tas.nb), residuals(tas.nb).

A key model assumption is independence: the Yij are

assumed to be independent (conditionally on block and treat-

ment) across sites, and there is also an implicit assumption of

independence across species in separately applying maximum

likelihood estimation to each species. This latter assumption is

relaxed in hypothesis testing, as described later.

Independence of sites, as always, is an important assump-

tion in multivariate analysis which can only be ensured

through an appropriate study design (Gotelli & Ellison 2004).

The remaining model assumptions , however, can be checked

from the data as below.

CHECKING MODEL ASSUMPTIONS

There are two key assumptions in any manyglm fit: the mean–

variance assumption, specified by choice of the family argu-

ment as in eqn 1; and the assumed relationship between mean

abundance and environmental variables, as specified by the

link function and formula as in eqn 2. The appropriateness of

these assumptions can be checked by plotting the residuals vs.

fits (Fig. 1b):

> plot(tas.nb)

Little pattern suggests that the quadratic mean–variance

assumption implicit in using family ¼ "negative bino-

mial" is plausible.

A second way to study the mean–variance relationship is to

plot it directly:

> meanvar.plot(copepods~tr.block, col ¼ as.

numeric (treatment))

where tr.block is a factor variable containing the eight

block·treatment combinations. This function plots the sample

variance against the sample mean for each species within

each factor level. A quadratic line (as in Fig. 1c) fits this

mean–variance trendwell.

The second assumption, the log-linearity assumption of

eqn 2, was unimportant for the copepod example because the

model included orthogonal factors only. However, if quantita-

tive variables are included in the model (e.g. pH), then a trend

in size of residuals at different fitted values (e.g. a ‘U-shape’ in

Fig. 1b) would suggest a violation of the log-linearity assump-

tion.

TESTING HYPOTHESES ABOUT THE COMMUNITY–

ENVIRONMENT ASSOCIATION

Multivariate hypotheses about the treatment effect and treat-

ment-by-block interaction can be tested:

> anova(tas.nb, p.uni ¼ "adjusted")

which returns a table testing the significance of each term

in the log-linear model of eqn 2 (Fig. 1d). It can be seen that

there is a significant effect of the treatment factor (Dev ¼
106Æ5, P ¼ 0Æ008), meaning that treatment has a significant

multiplicative effect on mean abundance. The interaction

between blocks and treatments is not significant (Dev ¼
48Æ5, P ¼ 0Æ063), meaning that the multiplicative treatment

effect is consistent across blocks. The p.uni argument

allows univariate ‘species-by-species’ results to be returned as

well, some of which are displayed in Fig. 1c. These P-values

have been adjusted to control the family wise error rate

across species, using a resampling-based implementation of

Holm’s step-down multiple testing procedure (Westfall &

Young 1993). It can be seen that Ameira, Ectinosoma and

Mictyricola have large treatment effect test statistics (above

20), consistent with the pattern seen in Fig. 1a, but their

adjusted P-values are only marginally significant (Padj ¼
0Æ045, 0Æ071, 0Æ073, respectively). This demonstrates a key

advantage of multivariate analysis – there is greater power to

detect patterns when analysing all species simultaneously

(P ¼ 0Æ008) than when looking for a pattern separately in

each species (Padj ‡ 0Æ045).
The argument test specifies the test statistic used, which

can be "LR" (likelihood ratio), "wald" or "score" (War-

ton 2011). By default, the multivariate test statistic is calcu-

lated assuming independence of species response variables,

which makes the test statistic a simple sum of the univariate

test statistics across species, as in Warton et al. (2012). This

assumption can be relaxed using the cor.type argument to

use statistics that account for correlation between variables,

which improves power properties of the test statistic (Warton

2011) but at the expense of computation time. The statistics

in mvabund are analogous in construction to conventional

manova and multivariate regression statistics, indeed setting

family ¼ "normal" and cor.type ¼ "R" results

exactly in conventional multivariate statistics. While other

choices of family allow for non-normal data, other choices

of cor.type produce statistics that better handle situations

where there are many response variables compared to the

number of sites, as for the Tasmania data set (Warwick,

Clarke & Gee 1990). Note, however, that irrespective of

choice of cor.type, inferences are valid even when abun-

dances are correlated across taxa – because the significance

of the test statistic is evaluated via resampling rows of data,

which preserves and accounts for any correlation structure

across species within sites.
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The argument nBoot sets the number of resamples used to

estimate the P-value (default is 1000), and resamp decides

which resampling method is used to calculate the P-values.

Available methods are case, residual and score resampling,

residual permutation or parametric bootstrap (resamp ¼
"case", "resid", "score", "perm.resid",

"montecarlo") (Davison &Hinkley 1997). We have studied

all of these methods by simulation and found them to provide

approximately valid tests for typical count data sets, while we

specifically recommend the parametric bootstrap for presence/

absence data. All the resampling methods are computationally

intensive, so the core functions are coded in C++with an R/

C++ interface (Eddelbuettel & Francois 2011) to reduce

computation time. Most analyses are completed in seconds or

minutes, but longer computations times would be expected for

data sets with hundreds or thousands of sites and/or species. In

such cases, it is advisable to first estimate computation time

using an initial run with a small number of bootstrap samples,

for example, nBoot ¼ 50.

The anova function is quite flexible and handles nested

hypotheses in the standardway:

> tas.block < manyglm(copepods� block,

family ¼ "negative.binomial")

> anova(tas.block, tas.nb)

tests whether the block·treatment model (tas.nb) explains

any additional variation not captured by a blockmodel alone.

The mvabund package is available on CRAN (cran.

r-project.org) and is compatible with version 2.13 of r

and above.
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